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Advanced mean-field theory of the restricted Boltzmann machine
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Learning in restricted Boltzmann machine is typically hard due to the computation of gradients of log-likelihood
function. To describe the network state statistics of the restricted Boltzmann machine, we develop an advanced
mean-field theory based on the Bethe approximation. Our theory provides an efficient message-passing-based
method that evaluates not only the partition function (free energy) but also its gradients without requiring statistical
sampling. The results are compared with those obtained by the computationally expensive sampling-based
method.
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Restricted Boltzmann machine (RBM) forms building
blocks of a deep belief network [1,2], which is able to learn
complex internal representations of structured objects (such
as nature image, speech, or handwriting). RBM also has wide
applications in computational biology problems, for example,
modeling high-dimensional neural activity data from cortical
microcolumns [3].

However, learning in RBM is computationally difficult,
since gradients of the log-likelihood function need to be
computed at every iteration step to update the model pa-
rameters. This computation is usually accomplished by the
Gibbs-sampling-based method or its variants [4,5], for which
the tradeoff between accuracy and convergence speed requires
careful considerations. Furthermore, an efficient way to eval-
uate the partition function (e.g., log-likelihood function for
cross-validation analysis) remains unknown.

Here, we develop a mean-field theory for the RBM based
on the cavity method (Bethe approximation) [6], which
yields an efficient and fully distributed algorithm to evaluate
the free energy (partition function) of a RBM of interest.
The remarkable efficiency is confirmed by comparing the
computation results of gradients of log-likelihood function by
Gibbs sampling and the proposed mean-field theory.

A RBM [7,8] consists of one hidden layer and one visible
layer without lateral connections between nodes in each layer.
We assume the hidden layer has M nodes, while the visible
layer has N nodes. Hidden node a with external field ha is
connected to visible node j with field φj by a symmetric
coupling waj . The energy function for RBM is thus defined
by E = −∑

i,a σiwaisa − ∑
i σiφi − ∑

a hasa , where σi and
sa are used to specify the state of visible node i and hidden
node a, respectively. Due to the conditional independence of
hidden nodes’ state given σ , the state of the hidden nodes can
be marginalized. This leads to the following probability of a
visible state:

P (σ ) = 1

Z

∏
a

[2 cosh(waσ + ha)]
∏

i

eφiσi , (1)

where wa denotes the ath row vector of the coupling matrix w.
Z is a normalization constant (also called the partition
function) of the model. As a model study, we assume the
element of the matrix w is independently and identically
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distributed with a normal distribution with mean zero and
variance g/N . We assume that the external field for both layers
follows a normal distribution with mean zero and variance v.
We denote the ratio between the number of hidden nodes and
that of visible nodes by α = M/N , where M and N can
be arbitrarily large. A schematic representation of a RBM
(M = 3, N = 5) is shown in Fig. 1.

An exact computation of Z requires an exponential
computational complexity (2N ), which becomes impossible
for a relatively large N . However, advanced mean-field
approximation can be used to compute approximate values
under certain condition, and its prediction should be compared
with numerical simulations. Here, we propose the Bethe
approximation [6] to tackle this problem. First, we transform
the original model (left panel of Fig. 1) into a factor graph
(right panel of Fig. 1) [9], where each square node indicates
a Boltzmann factor 2 cosh(waσ + ha) in Eq. (1). Then, we
introduce the cavity probability Pi→a(σi) that the visible
node i takes state σi in the absence of the contribution
from factor node a [10], and Pi→a(σi) satisfies the following
self-consistent equations:

Pi→a(σi) ∝ eφiσi

∏
b∈∂i\a

μb→i(σi), (2a)

μb→i(σi) =
∑

{σj |j∈∂b\i}
2 cosh (wb · σ + hb)

∏
j∈∂b\i

Pj→b(σj ),

(2b)

where the symbol ∝ indicates a normalization constant, ∂i\a
denotes the neighbors of node i except factor node a, ∂b\i
denotes the neighbors of factor node b except visible node i,
and the auxiliary quantity μb→i(σi) represents the contribution
from factor node b to visible node i given the value of σi [10].
With these definitions, the products in Eq. (2) are reasonable
under the weak correlations assumption, whereas, the validity
of this Bethe approximation should be checked by a stability
analysis.

Note that the computation in Eq. (2b) is still intractable
due to the summation over all possible σ except σi . However,
because Ub→i ≡ ∑

j∈∂b\i wbjσj is a sum of a large number of
nearly independent random variables, the central-limit theo-
rem implies that the distribution of Ub→i is well characterized
by its mean and variance [11], i.e., Gb→i = ∑

j∈∂b\i wbjmj→b

and �2
b→i � ∑

j∈∂b\i w2
bj (1 − m2

j→b), respectively, where
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FIG. 1. (Color online) A RBM is composed of one hidden layer
and one visible layer. No lateral connections exist within both hidden
and visible layers. Each hidden node is connected to all visible nodes
with symmetric coupling weights and is responsible for capturing
high-order dependence. The original RBM is shown in the left panel as
an example of three hidden nodes (solid circles) and five visible nodes
(empty circles). The right panel shows a transformed factor graph
after marginalization of hidden states for theoretical analysis. Each
factor node (square node) represents the probabilistic normalization
of a hidden node given the state of all visible nodes (see the main
text).

mj→b ≡ ∑
σj

σjPj→b(σj ) denotes the cavity magnetization
(the average of σj in the absence of factor node b).

Because we consider the binary spin variable σi = ±1,
Pi→a(σi) and μb→i(σi) can be parametrized by mi→a and cav-
ity bias ub→i , respectively. ub→i is defined as 1

2 ln μb→i (σi=1)
μb→i (σi=−1) .

The practical recursive equations, the so-called message
passing equations, are thus derived as

mi→a = tanh

⎛
⎝φi +

∑
b∈∂i\a

ub→i

⎞
⎠ , (3a)

ub→i = 1

2
ln

cosh(hb + Gb→i + wbi)

cosh(hb + Gb→i − wbi)
, (3b)

where the �b→i dependency in Eq. (3b) drops because of the
symmetry of cosh. The cavity magnetization can be understood
as the message passing from the visible node to the factor node,
while the cavity bias is interpreted as the message passing
from the factor node to the visible node. This message passing
based computation is much more accurate than naive mean-
field approximation [12], which assumes a fully factorized
distribution for Eq. (1). In contrast, Eq. (3) captures nearest
neighbors’ correlations.

Once the iteration of Eq. (3) converges, the free energy of
the model can be computed from the fixed-point solution.
Under the Bethe approximation, the Bethe free energy is
expressed as [10,11]:

F = −
∑

i

ln Zi + (N − 1)
∑

a

ln Za, (4)

where Zi = eφi
∏

b∈∂i μb→i(+1) + e−φi
∏

b∈∂i μb→i(−1),
in which μb→i(σi) = 2e�2

b→i /2 cosh(hb + Gb→i + wbiσi).
Za = 2e�2

a/2 cosh(ha + Ga). Ga and �2
a are given by∑

j∈∂a wajmj→a and
∑

j∈∂a w2
aj (1 − m2

j→a), respectively.
Each stable solution of the message passing algorithm of
Eq. (3) corresponds to a local minimum of the free-energy
function in Eq. (4) [13].

RBM defined in Fig. 1 is basically a densely connected
graphical model. Our mean-field theory provides a practical
way to estimate the free energy of single instances (typical
examples of the model). More precisely, we initialize the cavity
magnetization and bias on each link of the factor graph by

random values, and then iterate Eq. (3) until it converges within
a prescribed accuracy. Note that the overall time complexity
is of the order O(N2); furthermore, the algorithm is fully
distributed and thus amenable to large-scale applications.

In the remaining part, we demonstrate the computation
of the free energy on large single instances by applying the
message passing algorithm and confirm the accuracy of the
results by comparing gradients of the log-likelihood with those
obtained by the Gibbs sampling method. A stability analysis
of the message-passing algorithm is also presented.

We run the message-passing equations on single instances
of RBMs as size N , hidden-node density α, and coupling
strength g are varied. As displayed in Fig. 2(a), the free-energy
density decreases as α increases. Note that the density does

FIG. 2. (Color online) Free-energy density (f = F/N ) of single
instances of RBMs. Iterations of the message passing equations
are always converged to produce the data points. The error bars
give statistical errors across ten random instances. (a) Free-energy
density as a function of α (density of hidden nodes); g = 1.0 and
v = 0.05. The inset shows the absolute difference, |�f |, of the
free-energy density estimated by the exact enumeration and the
Bethe approximation (BA) for N = 20 (see a comparison for ten
instances with α = 0.6 in the inset, where the line indicates equality).
(b) Free-energy density as a function of weight strength g and field
strength v (shown in the inset). α = 0.5.
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not change significantly at two large sizes (N = 100 and
N = 1000). Furthermore, the inset of Fig. 2(a) shows that the
theoretical result even matches well with the exact enumeration
result for small size N = 20. As the variance parameter g

of weights increases, the free-energy density also decreases
[Fig. 2(b)]. The same property also holds when the variance
v of external field increases [the inset of Fig. 2(b)]. In the
explored range of g (or v) and α, Eq. (3) converges in a
few steps to a single fixed point on which the free energy
is calculated. Therefore, the Bethe approximation provides
an accurate estimation of free energy much faster than other
sampling based procedures, which are typically slow to reach
an equilibrium state.

The stability of Eq. (3) can also be studied on single
instances. Apart from the cavity magnetization, we introduce
its variance as an extra message denoted by Vi→a [14,15]. The
evolution of Vi→a follows:

Vi→a =
(
1 − m2

i→a

)2

4

∑
b∈∂i\a

Pb→i

× [tanh(�b→i) − tanh(�b→i − 2wbi)]
2 , (5)

where �b→i ≡ hb + Gb→i + wbi and Pb→i ≡∑
j∈∂b\i w2

bjVj→b. The stability is measured by the total
variance S(t) = ∑

(i,a) Vi→a(t) summed over all connected
pairs (i,a), where t is the iteration step. The explosion of
S(t) indicates the instability of the message passing equations,
which is related to the divergence of the (nonlinear) spin-glass
susceptibility [16], and thus the Bethe approximation becomes
inconsistent. We study this effect on single instances of
RBM as shown in Fig. 3. A relative strength is denoted as
λ = S(t + 1)/S(t), where t denotes the step at which the
iteration converges or exceeds a prefixed maximal number

FIG. 3. (Color online) Stability parameter λ as a function of
model parameters. N = 1000, α = 0.5, and v = 0.05. The error bars
give statistical errors across ten random instances. The left inset gives
stability versus α with g = 1.0 and v = 0.05. The right inset gives
two examples (black and red) taken from the main figure at g = 2.1.
S(0) is the initial total variance.

(tmax = 500). λ grows with α and g, and the fluctuation across
instances becomes strong near to the critical point (λ = 1).
Note that increasing α has an equivalent effect of increasing
g. In the right inset, two typical examples are shown. Near
to the critical point, some instances have decaying variance
strength (λ < 1), while some have growing strength (λ > 1).
Equation (5) thus tells us how stable (unstable) the iteration of
Eq. (3) is for a particular RBM. The algorithm converges in a
few iteration steps to a solution unless the recursive process is
close to the instability boundary.

RBM can be used to model the real data, and the parameters
are fitted to maximize the probability of observing the
training data [2]. This would lead to computation of the
following quantities, mi ≡ 〈σi〉, m̂a ≡ 〈tanh(waσ + ha)〉, and
Caj ≡ 〈tanh(waσ + ha)σj 〉, where the average, 〈·〉, is taken
over the distribution defined in Eq. (1), which is intractable
without approximations. Here, mi is the average of visible
state σi , m̂a is the average of hidden state sa , and Caj is
the correlation between sa and σi . Although an accurate
evaluation of the above quantities requires a sufficiently
long Gibbs sampling (so-called the most difficult negative
phase in the machine-learning community [2]), we can
compute them by the message passing equations and then
compare the results with those obtained by Gibbs sampling to
check the consistency of the theory.

Following the same spirit, our theory gives the theoretical
evaluation of the above quantities as

mi = tanh

(
φi +

∑
b∈∂i

ub→i

)
, (6a)

m̂a =
∫

Dx tanh(�̃ax + G̃a), (6b)

Caj � m̂amj + waj

(
1 − m2

j

)
Aa, (6c)

where Dx ≡ e−x2/2/
√

2πdx is a Gaussian measure. Aa ≡ 1 −∫
Dx tanh2(�̃ax + G̃a), G̃a = ∑

k∈∂a wakmk + ha , and �̃2
a �∑

k∈∂a w2
ak(1 − m2

k) [17]. Equation (6) is computed based on
the fixed point of the iterative algorithm [Eq. (3)].

We used alternating Gibbs sampling [5] to evaluate the
equilibrium average of the gradients. More precisely, the
hidden nodes are updated in parallel according to P (sa =
1|σ ) = ewaσ+ha /[2 cosh(waσ + ha)], while the visible nodes
are then all updated in parallel according to P (σi = 1|s) =
ewT

i s+φi /[2 cosh(wT
i s + φi)], where wi is the ith column of the

weight matrix. Note that the visible nodes are conditionally
independent given the hidden states and vise versa [5]. These
two steps of updates form one full step of the alternating Gibbs
sampling. If this Markov chain is run for a sufficiently long
time, the stationary (equilibrium) distribution is expected to
be reached, from which the averages can be estimated. We
test our theory in a system with N = 100 visible nodes and
run the Markov chain with 106 steps for thermal equilibra-
tion and the other 4 × 106 steps to collect a total number
of 105 samples to calculate the average. We measure the
performance by the root-mean-square (RMS) error between
the Gibbs sampling (GS) result and the Bethe approximation
(BA) result, which is shown in Fig. 4. The RMS error is
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FIG. 4. (Color online) Evaluation performance of mean-field
theory in comparison with the Gibbs sampling. Iterations of the
recursive equations always converged to produce the data points.
The error bars give statistical errors across ten random instances.
(a) RMS error as a function of g; N = 100 and v = 0.02.
(b) Scatter plot for a typical example of N = 100, α = 0.5, g = 0.1,
and v = 0.02. The inset shows an example of g = 0.55 (other
parameters do not change). The line indicates equality. (c) RMS
error δm reached by CD-k as a function of k in comparison to the
Bethe approximation; N = 100, α = 0.2, g = 0.55, and v = 0.02.
The result is averaged over five random instances.

defined as δY ≡
√

1
|Y |

∑|Y |
i=1(Y GS

i − Y BA
i )2, where Y takes m,

m̂, or C , and |Y | indicates the number of these parameters.
Small RMS error indicates that the Bethe approximation is
accurate.

As shown in Fig. 4(a), all evaluation errors grow with the
weight strength g, which is reasonable since our mean-field
theory will break down when the network enters a strongly
correlated state, as already shown by the stability analysis.
In a similar manner, the error grows with the hidden node
density α, because each hidden node puts a constraint to
the network and all constraints compete with each other to
give an equilibrium state, resulting in strong correlations
with high α. However, the magnitude of all errors is small,
implying that one can acquire accurate estimation of gradients
of log-likelihood function by passing messages on a factor
graph as well. We show this point more clearly with a
scatter plot in Fig. 4(b) (Bethe approximation result versus
Gibbs sampling result). This accuracy is obtained by requiring
much fewer computational costs compared with the Gibbs
sampling. The comparison further confirms the efficiency of
the proposed mean-field method across a wide range of model
parameters.

Note that the Gibbs sampling result serves as the ground
truth here, since we run the Markov chain for a long time.
More practically, one can estimate the statistics by k-steps
contrastive divergence (CD-k) algorithm [5] that requires
a time complexity of O(kT MN ), where T denotes the
number of sample particles. However, to reach a similar
accuracy as the Bethe approximation, it typically requires
k � 10 and T ∼ 105 under the current setup [Fig. 4(c)]. In
contrast, the Bethe approximation yields a time complexity
of O(nMN ) with n < 100, where n is the number of
iterations and one iteration involves the update of MN cavity
messages.

In conclusion, we propose a mean-field theory for the RBM,
a widely used model in the machine-learning community
and biological data analysis. The theory captures nearest
neighbors’ correlations by operating on the cavity factor graph
(by removing factor nodes), leading to an approximate estima-
tion of the free-energy function (log-likelihood function) for
single instances of large-size networks, for which the standard
Gibbs sampling procedure becomes prohibitively slow to
get a reliable result (e.g., for evaluating the log-likelihood
function for cross-validation analysis). Moreover, we replace
the normal Gibbs sampling with a mean-field computation
based on message passing algorithm, to estimate the gradients
of log-likelihood function and show its efficiency by extensive
numerical simulations on single instances. The nature of this
fast inference lies in the fact that the information is exchanged
locally between factor nodes and visible nodes, to reach
a coherent fixed point, which may provide a computation
paradigm for probabilistic inference in neural networks. We
expect the mean-field theory inspired calculation will be useful
in practical applications and bring more insights to understand
the RBM and its role in deep learning [18].
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