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A Bayesian psychophysics model of sense
of agency
Roberto Legaspi 1,2 & Taro Toyoizumi1,2

Sense of agency (SoA) refers to the experience or belief that one’s own actions caused an

external event. Here we present a model of SoA in the framework of optimal Bayesian cue

integration with mutually involved principles, namely reliability of action and outcome sen-

sory signals, their consistency with the causation of the outcome by the action, and the prior

belief in causation. We used our Bayesian model to explain the intentional binding effect,

which is regarded as a reliable indicator of SoA. Our model explains temporal binding in both

self-intended and unintentional actions, suggesting that intentionality is not strictly necessary

given high confidence in the action causing the outcome. Our Bayesian model also explains

that if the sensory cues are reliable, SoA can emerge even for unintended actions. Our formal

model therefore posits a precision-dependent causal agency.
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Sense of agency (SoA) is the registration1 that the self initi-
ates actions to influence its external environment2. It
therefore accompanies voluntary actions3–6, allows oneself

to feel distinct from others7–9, and be responsible for its own
actions2,6,10,11. Studies show SoA emerges from, and is particu-
larly sensitive to any disruption in, the congruous flow of
intentional actions to expected sensory outcomes12. Crucially, the
degradation of this experience characterizes certain psychiatric
and neurological disorders13–15. For example, studies show
schizophrenic patients tend to attribute someone else’s actions to
themselves. Despite its significance16–18, the literature still lacks
the computational principles that can elucidate SoA.

We theorize SoA as the confidence in one’s perception of the
action-outcome effect, and that it is consistent (e.g., spatially or
temporally) with the hypothesis that the action caused the out-
come. We adapted the model of Sato et al.19 that was originally
used to explain the ventriloquism effect as a Bayesian estimate of
a common source behind the consistency of the audiovisual sti-
muli, akin to being the common cause20 of the audiovisual
integration. Formalizing SoA by this Bayesian psychophysics
principle distinguishes our theory from existing works.

We compared the predictions of our model with the results of
two pertinent intentional binding studies. Intentional binding,
which is the perceived compression of the time interval between
voluntary action and its outcome, has been reported as a reliable
implicit measure of SoA and has been used in a large number of
studies providing valuable analyses on the temporal perception of
action-outcome effects and the nature of SoA21. The seminal
experiment of Haggard et al.3 investigated the perceived action-
outcome timing effects in three conditions: voluntary wherein the
subject intentionally presses a button, involuntary wherein mus-
cle twitches of the subject’s hand are induced by a transcranial
magnetic stimulation (TMS) applied to the motor cortex, and
sham TMS wherein the TMS on the parietal cortex produces
audible clicks but no movement (hereafter, voluntary, involun-
tary, and sham conditions, respectively). Haggard and colleagues
computed the time interval between the perceived action timings
(with the timings of either voluntary actions, muscle twitches, or
audible TMS clicks as control experiment) and the perceived
timings of subsequent tone stimuli. They showed that voluntary
actions produced intentional binding, involuntary muscle twit-
ches produced repulsion, i.e., prolonged opposite perception of
the action-outcome intervals, and audible TMS clicks produced
neither binding nor repulsion. Hence, they posit intentionality is
necessary to achieve action-outcome binding.

The second pertains to the study of Wolpe et al.22, which
investigated the contribution of cue integration to intentional
binding by manipulating the reliability of the consequent tone
relative to a background white noise. Such manipulation resulted
in three levels of tone uncertainty conditions, namely low,
intermediate, and high uncertainty. Their analyses showed that
when tone reliability was reduced, the perceptual shift in tone
timing towards the action was increased.

Although Bayesian integration was proposed as a general
principle behind SoA14,23, it was unknown whether the observed
action-outcome temporal compression and repulsion effects are
consistent with Bayesian principles, and if indeed the case, the
question is how. Our Bayesian model reproduces the above
empirical results on intentional binding based on a computational
principle. Further, it goes beyond timing estimations by exposing
the underlying Bayesian mechanisms that possibly drove the
temporal binding. Our Bayesian model explains the perceived
compressed action-outcome time interval is more consistent with
the prior belief of the causal role of one’s action in producing the
immediate outcome and thus increases the confidence in the
Bayesian estimate assuming the causal case, modeled as SoA.

Moreover, our model explains intentional binding as a specific
class of the more general notion of causal binding. Our Bayesian
model predicts that intentional binding generally happens on a
per-trial basis, yielding a bimodal distribution of the perceived
action-outcome interval. Lastly, the model also predicts that if the
sensory input signals are perceived as reliable (precise), SoA may
arise even for unintended actions, which serves as a testable
theory for future SoA experiments.

Results
Bayesian inference model of action-outcome temporal binding.
We considered the experimental setup of intentional binding
where a subject presses a button (i.e., the action) and a tone (i.e.,
the outcome) sounds 250ms after the button press. The true
action and outcome timings are thus described by t�A = 0 ms and
t�O = 250ms, respectively, but they are unknown to the subject.
The task for the subject is to accurately report her perceived
timings of the button press and tone. We assume the arrival of
relevant sensory input informing the timing of each of these
physical events involves sensory delay d and jitter of variance σ2

due to sensory noise. Thus, the arrival time τA of sensory input
that signals the action timing is assumed to be generated from a
Gaussian distribution, N t�A þ dA; σ

2
A

� �
, with mean t�A þ dA and

variance σ2A. Similarly, the arrival time τO of sensory input that
signals the outcome timing is generated from N t�O þ dO; σ

2
O

� �
.

The brain often resolves such ambiguity in sensory inputs by
integrating multiple sensory cues akin to the Bayesian “ideal
observer”24. Hence, we model a Bayesian observer who estimates
action timing tA and outcome timing tO based on the
corresponding noisy sensory inputs arriving at time τA for the
action and τO for the outcome. The conditional probability
distributions of τA and τO that the Bayesian observer uses are
modeled as Gaussian distributions

P τAjtAð Þ / exp � τA � tAð Þ2
2σ2A

� �

P τOjtOð Þ / exp � τO � tOð Þ2
2σ2O

� �
;

ð1Þ

with mean tA and tO, and variance σ2A and σ2O for action and
outcome, respectively. It is noteworthy that sensory delays dA and
dO are not included in Eq. (1) for the reason we describe in the
next paragraph.

Before studying the binding effect, let us consider simple
baseline conditions. In one baseline condition, the action timing
is reported by the subject without the presentation of an outcome
tone. If no prior knowledge is available, the Bayesian observer
reports the action timing that maximizes the conditional
probability distribution in Eq. (1). Hence, the estimated action
timing t̂A ¼ τA is solely determined by the noisy sensory input
informing the action timing. In this case, the model predicts that
the distribution of t̂A is N t�A þ dA; σ

2
A

� �
. The mean and SD of t̂A

in the baseline condition were experimentally reported, e.g.,
Haggard’s results in the voluntary condition suggest dA= 6 ms
and σA= 66 ms (refer to Table 1 in Methods for all condition-
based dA and σA values). Importantly, we assume that the
observer does not take into account sensory delay dA in Eq. (1). If
the Bayesian observer included its effect, it could compensate for
this delay and report unbiased timing, which was not the case in
the experiment. Therefore, we assume that the observer was
unable to take into account the sensory delay in Eq. (1). In the
other baseline condition, the subject passively listens to a tone
and reports its timing. This case goes parallel to the above case
and the model predicts that the estimated tone timing is t̂O ¼ τO,
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which is distributed according to N t�O þ dO; σ
2
O

� �
. The compar-

ison of this model prediction to Haggard’s experiment, e.g., would
be dO= 15 ms and σO= 72 ms (refer to Table 1).

Next we study the effect of binding when the subject makes an
action and then listens to the outcome tone, commonly referred
to as the operant condition. In this case, the Bayesian observer
makes an inference not only based on the conditional probability
distribution in Eq. (1) but also based on the prior distribution of
tA and tO. Adapting the Bayesian model of the ventriloquism
effect19, we assume the prior distribution depends on the
observer’s belief whether the action caused the outcome, i.e.,
the causal case: ξ= 1, or the action and the outcome are
unrelated, i.e., the acausal case: ξ= 0:

P tA; tOjξð Þ / exp � tO�tA�μAOð Þ2
2σ2AO

� �
; ðξ ¼ 1Þ

1: ðξ ¼ 0Þ

8<
: ð2Þ

The action causes the outcome in the causal case (ξ= 1) so that
the outcome timing involves a typical delay μAO with respect to
the action timing and a Gaussian-distributed jitter of SD σAO. The
outcome is caused by something other than the action in
the acausal case (ξ= 0) so that tA and tO are independent. Lastly,
we define P(ξ) as the prior for each belief: P(ξ= 1) for the causal
case and P(ξ= 0)= 1− P(ξ= 1) for the acausal case. We
hypothesize the estimation of ξ to be essential for the perception
of causality and SoA (explained below).

Given a pair of sensory inputs at τA and τO, the Bayesian
observer estimates the most probable timing for the action and
the outcome, and whether these observations are consistent
with the causal case. According to the Bayesian estimation
theorem, the maximum-a-posteriori (MAP) estimate (̂tA; t̂O; ξ̂) of
the corresponding pair of physical sensory timing (tA, tO) and the
causal variable ξ is given by

t̂A; t̂O; ξ̂
� �

¼ arg max
tA;tO;ξ

P tA; tO; ξjτA; τOð Þ; ð3Þ

where P(tA, tO, ξ|τA, τO) is the posterior probability distribution of
(tA, tO, ξ) given the sensory inputs (τA, τO). Hence, whether the
Bayesian observer estimates the action-outcome effect to be
causal or not depends on the posterior ratio comparing the causal
case (ξ= 1) and the acausal case (ξ= 0), namely

r � max
tA;tO

P tA; tO; ξ ¼ 1jτA; τOð Þ=max
tA;tO

P tA; tO; ξ ¼ 0jτA; τOð Þ:
ð4Þ

Causality is detected if the confidence in the causal estimate is
greater than that in the acausal case, i.e., r > 1. The MAP estimate

of Eq. (3) is then given by (see Methods for the derivation)

t̂A; t̂O; ξ̂
� �

¼ τA þ σ2A
σ2tot

τO � τA � μAO
� �

; τO � σ2O
σ2tot

τO � τA � μAO
� �

; 1
� �

; ðr>1Þ
τA; τO; 0ð Þ; ðr<1Þ

(

ð5Þ
with σ2tot � σ2A þ σ2O þ σ2AO. This indicates, on one hand, that
perceptual shift does not happen if the causality is not detected
(ξ̂ ¼ 0)—the time estimates for action and outcome simply reflect
the corresponding sensory signals in this case. On the other hand,
perceptual shift happens if the causality is detected (ξ̂ ¼ 1)—the
action and outcome timing attract each other in the form of
binding if τO− τA > μAO and repel each other in the form of
repulsion if τO− τA < μAO. The magnitude of perceptual shift for
the action and outcome timing depends on coefficients σ2A=σ

2
tot

and σ2O=σ
2
tot, respectively, implying that perceptual shift is greater

for a more unreliable stimulus. This model predicts that the
occurrence of binding, repulsion, or no perceptual shift is trial-
dependent, influenced by the noisy sensory signal τO− τA
informing the action-outcome interval. We denote the probability
of detecting causality (i.e., ξ̂ = 1) by Pc (see Methods for its
analytical expression). Pc increases with larger P(ξ= 1) and
smaller σAO if σAO � σA; σO.

Proposed measure of SoA. Separate from the judgement of
causality described above, we also directly quantify the confidence
in the causal MAP estimate

CCE ¼ max
tA;tO

PðtA; tO; ξ ¼ 1jτA; τOÞ ð6Þ
and we postulate this quantity to be a possible indication of the
pre-reflective feeling of agency (FoA; see Discussion). The ana-
lytical expression of confidence in causal estimate (CCE) in
Methods yields the following requirements to have high CCE: (i)
the timing of sensory signals must be consistent with the causa-
tion of the outcome by the action, namely τO− τA ≈ μAO; (ii) the
causal prior probability P(ξ= 1) must be high; (iii) the sensory
inputs must be precise, i.e., the amplitudes σA and σO of sensory
jitter must be small enough. Furthermore, by computing for the
peak of the conditional probability distribution, instead of inte-
grating over tA and tO, CCE does not only indicate the causation
of the outcome by the action but is also sensitive to the accuracy
of the action and outcome timing estimates. We therefore posit
SoA as encapsulation and manifestation of several pertinent
aspects, which include temporal consistency in the action-
outcome effect, the prior belief of an action causing the out-
come, and the reliability of the perceived sensory signals. Hence,
our Bayesian model coherently explains not just SoA that arises
from the causation of the outcome by the action but also one that

Table 1 List of Bayesian model parameters and their values

Baseline parameters Operant parameters
All are temporal values in unit ms dA σA dO σO μAO= 230ms σAO= 10 ms P(ξ= 1)
• Set A: Reported by Haggard et al.3 • Set C: Obtained by our Bayesian model
Voluntary action 6 66 Voluntary action 0.9
Involuntary action (TMS-induced muscle
twitch)

83 83 Involuntary action (TMS-induced muscle
twitch)

0.9

Sham TMS (audible click only) 32 78 Sham TMS (audible click only) 0.1
Auditory tone 15 72

• Set B: Reported by Wolpe et al.22 • Set D: Obtained by our Bayesian model
Voluntary action −8 75
Low tone uncertainty 35 61 Low tone uncertainty 0.9
Intermediate tone uncertainty 46 66 Intermediate tone uncertainty 0.6
High tone uncertainty 95 90 High tone uncertainty 0.5
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is influenced by the reliability of the different agency cues—a
precision-dependent causal agency.

Simulation results and model predictions. Here we briefly
describe how we obtained the parameter values used in our
simulation (but see Methods for more details about the model
fitting and simulation). Fitting of dA, dO, σA, and σO is straight-
forward; they are suggested by the means and SDs of the reported
subjects’ baseline estimation errors (Table 1-Sets A and B in
Methods). After fixing these parameters, the model is left with
three free parameters, μAO, σAO, and P(ξ= 1). As described in
Eq. (5), μAO has an important role in determining whether
binding or repulsion happens in each experimental condition. A
fixed value of μAO= 230 ms successfully accounts for this quali-
tative behavior in all the six experimental conditions (three from
Haggard et al.3 and three from Wolpe et al.22) that we study. The
analytical expressions in Methods suggest that σAO and P(ξ= 1)
have a largely overlapping role in detecting causality. Causality is
more likely detected if σAO is small or P(ξ= 1) is large, although
the exact mechanisms are slightly different. At least one of these
two parameters needs to be adjusted according to the conditions
to account for the experimental observations. For simplicity, we
fix σAO= 10 ms to be a small enough constant to permit
noticeable perceptual shift and adjust P(ξ= 1) (see Table 1 for the
parameter values in six experimental conditions) to account for
two observations in each condition, namely the perceptual shifts
in the action timing and the outcome timing.

Our results show that our simple Bayesian model qualitatively
reproduces the perceptual shifts that were reported in the study
by Haggard et al.3 (Fig. 1). Consistent with their findings, our
Bayesian observer inferred the perceived action and outcome
timings to shift towards each other in the voluntary condition,
resulting in compressed temporal intervals between the action
and outcome perceptual shifts. However, reversed and prolonged
perceptual shifts were observed in the involuntary condition. The
model also reproduced no appreciable perceptual shifts in the
sham condition.

Our Bayesian model predicts binding and repulsion to increase
with stronger causal prior (Fig. 2). From Eq. (5), the amount of
binding or repulsion is given by τO � τAð Þ � t̂O � t̂A

� �
, which is

τO � τA � μAO
� �ðσ2A þ σ2OÞ=σ2tot in the causal case ðξ̂ ¼ 1Þ and

none otherwise ðξ̂ ¼ 0Þ. As the sensory signals are distributed
according to τA � N t�A þ dA; σ

2
A

� �
and τO � N t�O þ dO; σ

2
O

� �
,

the average of τO− τA− μAO factor is
m ¼ t�O � t�A þ dO � dA � μAO. Hence, the sign of m determines
whether binding or repulsion is predicted on average. With the
current set of parameters, m is positive in the voluntary
condition, yielding binding, and negative in the involuntary
condition, yielding repulsion (schematically drawn in Fig. 3a).
Perceptual shift is almost zero regardless of the causal prior P(ξ=
1) in the sham condition, because m ≈ 0. We chose P(ξ= 1)= 0.1
for this under-constrained sham condition, assuming that
causality would not be frequently detected.

Our Bayesian model provides interesting insights on what
possibly drives the perceived action-outcome temporal compres-
sion and repulsion effects. We empirically observed sensory delay
d to increase with larger SD σ of the Gaussian-distributed jitter
(observed in both Haggard et al. 3 and Wolpe et al.22; see Table 1
in Methods). This may imply that, as action or outcome
ambiguity is increased due to noise (greater σ) for increased
sensory uncertainty, more time would be needed (greater d) for a
sensory input to reach the subject’s perceptual threshold for
temporal awareness in the baseline condition. Thus, because of
m’s dependency on dO− dA, binding more likely happens when
the outcome is unreliable (i.e., with large dO) and repulsion more
likely happens when the action is unreliable (i.e., with large dA).

To further illustrate the model prediction from our simula-
tions, we plotted separately the action and outcome perceptual
shifts for the three conditions as functions of the temporal
disparity τO− τA (c.f. Eq. (5)). Indeed, our data show that for
instances in which τO− τA > μAO, action awareness is delayed
(positive action shift, Fig. 3b) and outcome tone is anticipated
(negative outcome shift, Fig. 3c), thereby demonstrating binding.
The opposite happens when τO− τA < μAO, thereby demonstrat-
ing repulsion in both action and outcome awareness (Fig. 3b, c,
respectively). We then plotted how the model’s MAP estimates on
the action-outcome interval are affected by the sensory time
difference τO− τA in the baseline (here, ξ̂ = 0 is forced; Fig. 3d)
and operant (Fig. 3e) conditions. We observe from the baseline
condition that the MAP estimates follow sensory inputs,

(A) Judgments in baseline conditions

Action
only 

Tone
only Time

(B) Judgments in operant conditions
Action + Tone

Results from Haggard et al. (2002) 

(2) Involuntary condition

+31 ms

(3) Sham condition

308 ms

249 ms

(1) Voluntary condition

+15 ms

189 ms

Simulation results with Bayesian model

(A) Judgments in baseline conditions

Action
only 

Tone
only Time

(2) Involuntary condition

+19 ms

(3) Sham condition

295 ms

(1) Voluntary condition

+13 ms

222 ms

(B) Judgments in operant conditions
Action + Tone

250 ms

0 ms0 ms

–15 ms–46 ms

–27 ms

–7 –8

–26 ms

Fig. 1 Qualitative replication of the empirical results reported by Haggard et al.3. Each subject’s mean judgment error in the single-event baseline condition
was subtracted from the mean judgment error for the corresponding event in the operant condition. This resulted in the values underneath the blocks that
indicate the magnitude and direction to which the temporal perceptions shifted. A positive perceptual shift informs delayed awareness and a negative shift
informs anticipated awareness. The action and outcome timings are perceived to shift towards each other in the voluntary condition. In contrast, they are
perceived to repulse in the involuntary condition. There is no discernible perceptual shift in the sham condition
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t̂O � t̂A ¼ τO � τA, whereas the perception of action and out-
come timings shifted towards the prior mean, t̂O � t̂A � μAO, in
the voluntary and involuntary conditions but not so much in the
sham condition with weak causal prior. Therefore, our model is
agnostic as to whether the action is self-intended or unintended.
Binding towards t̂O � t̂A � μAO will happen, be it in the opposite
direction, as long as the action is believed to have caused the
outcome. This suggests that causality is the phenomenon that
underlies intentional binding, and likely SoA, with self-intended
causality being a specific case. The temporal window of τO− τA
for detecting causality is wider in the voluntary and involuntary
conditions than in the sham condition.

We then examined how the prior belief in causation affects our
proposed measure for SoA in Haggard’s experimental setup. Our
model predicts CCE to strengthen together with the causal prior
but its strength differs depending on the conditions even at the
same strength of the prior (Fig. 4a). Interestingly, dA and σA are
the only parameters of our Bayesian model that differentiate the
three conditions in this figure. As we described above, these two
parameters are empirically correlated such that the delay dA
increases with larger σA. Hence, the difference in CCE in the three
conditions can be attributed to the inequalities in SDs of the
subjects’ action timing estimation errors in the three conditions:
σVolA <σShamA <σInvolA as per the data of Haggard et al.3 Haggard et al.
speculated that the unexpected and surprising quality of the
TMS-induced movement could account for the repulsion effect in
the involuntary condition. We suggest that this surprise might
have introduced uncertainty in the perception of action input
signals. Hence, although subjects were certain of the nature of
their voluntary actions, they could be less certain of the
proprioception signals induced by TMS, which could explain
the inequalities in σA. As a result, the model gives CCEVol >
CCESham > CCEInvol according to requirement (C), i.e., reliable
sensory inputs, for having high CCE when compared at the same
strength of the causal prior.

The relation between CCE and SoA becomes clear when we
analyze them with the fitted values of the causal prior (P(ξ= 1)=
0.9 for the voluntary and involuntary conditions and P(ξ= 1)=
0.1 for the sham condition as indicated in Table 1). Figure 4b
plots CCE on a per-trial basis as functions of the temporal

disparity τO− τA (c.f. the analytical expression for CCE in
Methods). CCE in the voluntary condition has a higher peak than
the involuntary condition as we described above (due to small σA
in the voluntary condition for the requirement (C)). In both
voluntary and involuntary conditions, CCE diminishes as τO− τA
moves farther from μAO because of the requirement (A) of small |
τO− τA− μAO| for having high CCE. Finally, CCE for the sham
condition takes much lower values than the voluntary or
involuntary conditions because of the requirement (B) of large
P(ξ= 1) for having high CCE.

In a similar fashion, we then examined the underlying
psychophysical mechanisms that could account for the temporal
binding observed by Wolpe et al.22, in which three uncertainty
levels (high, intermediate, and low uncertainty) of the outcome
stimulus were tested. We use the Bayesian model that was used to
reproduce the Haggard’s experiments with the same values of μAO
and σAO but adjusted the strength of the causal prior P(ξ= 1) to
fit the reported action timing and outcome timing in each
condition. We used P(ξ= 1)= 0.9, 0.6, and 0.5 for low,
intermediate, and high tone uncertainty conditions, respectively
(see Table 1 and Methods). This means that the prior belief in
causation decreases with the tone uncertainty, which is plausible.
(Alternatively, we could increase σAO, which produces similar
results; see above discussion on model fitting.)

Our model reproduces the experiments of Wolpe et al.22

(Fig. 5a), qualitatively explaining the temporal binding they
observed in terms of a single, coherent cue integration
formulation. The Bayesian estimate of the action-outcome
intervals shift towards t̂O � t̂A � μAO, as per the causal
temporal prior in Eq. (2) when causality is detected. On the
one hand, the magnitude of the shift is greater when the
outcome uncertainty is high (c.f. Eq. (5)). However, on
the other hand, causality is less frequently detected when the
outcome uncertainty is high with the reduced causal prior.
These two opposing effects are summarized in Fig. 5b. The
model can qualitatively reproduce the experiments if the former
effect is more dominant. Quantitatively, however, the latter
effect is necessary to mitigate the former effect.

Next, we plot how the Bayesian estimate of the action-outcome
interval, t̂O � t̂A, depends on the sensory inputs τO− τA. The
perceived intervals faithfully follow the sensory inputs in the
baseline condition (Fig. 5c), where all trials are acausal (ξ̂ ¼ 0) by
definition. In the operant condition (Fig. 5d), the Bayesian
estimate shifts towards the prior assumption t̂O � t̂A � μAO when
the sensory inputs are highly consistent with the prior τO− τA ≈
μAO and, thus, when the causality is detected (ξ̂ ¼ 1). Otherwise,
the estimate of action-outcome intervals follows sensory inputs.
The temporal window of τO− τA for detecting causality is wider
when the outcome uncertainty is lower.

Next, we quantify again CCE as a possible measure of SoA.
CCE diminishes with outcome uncertainty even when com-
pared at the same level of causal prior (Fig. 6a). Hence, CCE
explicitly depends on the outcome uncertainty. When plotted as
functions of temporal disparity, with the specific causal priors
obtained for each outcome uncertainty condition, the peak
values of CCE noticeably differ across the uncertainty condi-
tions (Fig. 6b). This is because of the different values of the
outcome uncertainty σO but also partly because of the different
values of the causal prior. In all conditions, CCE falls off with
the disparity of sensory inputs from the prior mean, |τO− τA−
μAO|. This fall-off is milder when the uncertainty is lower.
These results clearly manifest again three basic requirements of
CCE as follows: (i) the consistency of sensory inputs with the
causal prior; (b) strong prior belief in causality; and (c) reliable
sensory inputs.
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Fig. 2 Bayesian model predictions of the influence of causal prior strength
on action-outcome perceptual shifts. The best estimates of the Bayesian
model (in Fig. 1) were obtained from different causal priors, specifically, P
(ξ= 1) is 0.9, 0.9, and 0.1 (marked by the colored dots) for the voluntary,
involuntary, and sham conditions, respectively. The intervals between the
action and outcome perceptual shifts shrink in the voluntary, but widen in
the involuntary, condition with a strong causal prior. Minimal changes in
perceptual shifts are predicted for the sham condition even with a strong
causal prior
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Discussion
We formalize SoA by drawing parallels from a Bayesian inference
of the ventriloquism effect that estimates a common cause behind
its multisensory integration. Understanding causality has been
viewed to facilitate predictive, adaptable, and goal-directed
actions25–27; hence, this may bring about SoA. Our Bayesian
model integrates the action-outcome signals, compares them with
the prior expectation, and infers the causality between them as
well as the timing of these sensory signals. Our model could
concisely reproduce the intentional binding experiments by
Haggard et al.3 and Wolpe et al.22. Whether intentional binding
effects indeed follow Bayesian principles remained obscure.

Specifically, this was raised as an open question by Moore and
Fletcher14, pointing out only indirect empirical evidence existed
in support of Bayesian cue integration, and Wolpe et al.22 even
posited that Bayesian cue integration does not explain outcome
binding. Our model explains the temporal binding and repulsion
phenomena as compromise between the noisy sensory observa-
tions and the prior belief of the action-outcome timing. Impor-
tantly, our Bayesian model predicts that the perceptual binding is
generally trial-dependent and it must be correlated with the
estimated causality ξ̂ between the action and outcome. This
prediction can be tested when the probability Pc for detecting
causality is not close to 0 or 1, by examining whether the
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Fig. 3 Bayesian model predictions of trial-to-trial perceptual shifts and timing intervals. a Our Bayesian model predicts that (shown schematically) if
τO− τA > μAO action and outcome binding will happen. Otherwise, i.e., τO− τA < μAO, action-outcome repulsion will occur. In both cases, the perceived
timings in the baseline move (compress or stretch) towards the temporal consistency t̂O � t̂A � μAO in the operant condition. b, c When τO− τA > μAO,
there is positive perceptual shift in action awareness (̂tA � τA>0) and negative perceptual shift in outcome awareness (̂tO � τO<0). The opposite happens
when τO− τA < μAO. Both binding and repulsion occur in both voluntary and involuntary conditions, but very little effect in the sham condition. d The
Bayesian estimates follow the sensory inputs in the baseline condition, i.e., τO � τA � t̂O � t̂A, where all trials are acausal (ξ̂ = 0) by definition. e The
Bayesian estimate shifts towards the prior assumption, t̂O � t̂A � μAO, when the sensory inputs are highly consistent with the prior, τO− τA≈ μAO,
and therefore when causality is detected (ξ̂ = 1). Otherwise, the estimate of action and outcome timings follow the sensory inputs. The fitted causal prior
P(ξ= 1) is 0.9, 0.9, and 0.1 for the voluntary, involuntary, and sham conditions, respectively (as in Fig. 2). The per-trial results are grouped accordingly into
bins of width 200 (randomly chosen), and the mean and SD for each bin are plotted. This format is followed each time a quantity of interest is plotted as a
function of τO− τA
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distribution of action-outcome intervals is bimodal and whether
the intervals correlate with the reported causality between the
action and outcome. We have therefore shown how Bayesian
mechanism may underlie intentional binding. This is a significant
contribution, as no previous Bayesian proposals accounted for
experimental data on intentional binding and repulsion.

In addition, we theorize SoA as the CCE. CCE is high when the
action-outcome timing is consistent with the causal prior, the
causal prior is strong, and the action and outcome signals are
reliable. This notion is consistent to what have been propounded
as demonstrations of SoA: SoA arises from the causal relation
between performed actions and their consequences1,21,27,28, and
from the integration of different agency cues whose individual
influences are determined by their reliability14,15,29–32. Hence, we
posit CCE to be a plausible measure of SoA. Here, Bayesian cue
integration in terms of CCE is derived based on the computa-
tional principle of optimal inference in contrast to empirical
observations that causality and reliability are involved. Further,
CCE can explain outcome binding in terms of cue reliability that
was previously considered non-Bayesian22. CCE is not an indi-
cator of intention or a simple estimate of whether the action
caused an outcome, but a new proposal of how SoA may emerge
from the confidence in the estimate of the causality and timing
(see discussion below on CCE against intention-based temporal
binding).

Specifically, we postulate CCE fits the notion of a pre-reflective,
implicit FoA. Synofzik et al.1,30 provide a compelling account of
such feeling: FoA is best accounted for by multimodal weighting
and integration of different agency cues, and consists of an
automatic registration of whether an action or sensory event is
caused by the self or not. They posit FoA is nothing other than
first-person in that the self is implied; hence, no external attri-
bution (e.g., to TMS that caused the action) is possible. In the
event that there is a feeling of exogenous causation, this will be
overwritten by an explicit, interpretative judgment of agency
(JoA) based on contextual beliefs or rationalizations. Similarly,
the analytical expression of CCE shows that it is a multimodal
weighting and integration process that lies at the center of
obtaining a Bayesian causality inference. Furthermore, CCE itself
does not attribute causality to any external agent, such as in the
case of strong causal prior for TMS-induced movements. The
judgement of the causality, ξ̂, is then made based on the posterior
ratio r that compares CCE with the confidence in the acausal
estimate. Perceptual timing in our model simply reflects the

sensory signals if the causality is not detected (ξ̂ = 0), whereas
they are overwritten by the influence of the prior if the causality is
detected (ξ̂ = 1). For example, in the involuntary condition of
Haggard et al.3, the estimated action and outcome timing by the
model repulse reflecting the judgment of the causality. A com-
pelling speculation in the paper by Haggard et al.3 suggests this
notion: the repulsion in the involuntary condition “reflects a
mental operation to segregate, and thus to discriminate, pairs of
events that cannot plausibly be linked by our own causal agency”
(p. 384). We suggest such mental operation fits the notion of JoA,
as quantified by the time shifts in Eq. (5) with the detected
causality, and the peculiar feeling of causation by the involuntary
movement to be FoA, quantified by CCE.

Following the above explanation, our theory therefore has a
different take of the binding effect by Haggard et al.3, which
requires intentionality. Although intentional binding has been
repeatedly observed in the context of voluntary action, it remains
contentious in the literature whether it is indeed specific to
voluntary action, or causality contributes to this effect33. Our
model argues that the judgment of the causality is central to the
perceived temporal action-outcome binding, consistent with
current evidence that competes with the intentional account: the
temporal binding is actually causal, not intentional21,27,34. For
example, our model judges the causation of the tone even by the
TMS-induced action in the involuntary condition. Hence, our
Bayesian model predicts this unintended causality. Furthermore,
our Bayesian model predicts that the action-outcome timing
shifts toward the prior belief, t̂O � t̂A � μAO, when the causality is
perceived irrespective of the nature of the action, whether self-
generated (i.e., the voluntary condition) or unintended (i.e., the
involuntary condition). Interestingly, this temporal binding
toward the same prior belief produces the compression and
repulsion effects if the perceptual delay in the action timing (dA)
is small and large, respectively. What causes this difference in the
perceptual delay? We found that unreliable senses (with large σA
or σO) tend to involve long perceptual delays (with large dA or
dO). Hence, the observed large perceptual delay in the TMS-
induced action timing may be caused by the internal prediction
error due to the absence of efference copy35–37 and artificially
perturbed neural activity. In this sense, intentionality is not
strictly necessary for the sense of causality but influences the
precision-dependent action-outcome timing shifts in our model.
This is consistent with a recent empirical finding of intentional
binding-like effects that emerged without intentional actions33.
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the prior mean |τO− τA− μAO|. This falling of the CCE is faster when the causal prior is weaker and the uncertainty in the action input signal is higher
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We predict that experimental manipulations that reduce σA
would increase perceived SoA even for unintended artificial
actions. The prediction is therefore distinct from what was pre-
viously considered and can therefore serve as testable prediction
for future experiments on causal agency.

Our theory also has a different take of the binding effect of
Wolpe et al.22. Wolpe et al.22 showed intentional binding as cue
integration with uncertainty in outcome signals. They speculated
that action and outcome bindings are driven by two distinct
mechanisms: action binding is predicted by cue integration but
outcome binding supports the predictive pre-activation hypoth-
esis38, i.e., the neural representation of the sensory outcome is

activated prior to it. Hence, the outcome signals are perceived
faster with less jitter than when it is not predicted to occur after
the action. This could explain why the subjects’ timing estima-
tions are largely erroneous in the baseline condition and why the
outcome binding is greater than the action binding. Our theory,
although qualitative, explains both action and outcome bindings
by a single Bayesian cue integration mechanism. Our model
explains that the magnitudes of the action and outcome percep-
tual shifts, τO− τA− μAO, are influenced primarily by the
ambiguity of the outcome sensory signals, ðσ2A þ σ2OÞ=σ2tot, and
also in part by the strength of the causal prior that diminishes
with outcome uncertainty.
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The intentional binding paradigm has also been used to study
pathological SoA39–41. Patients with schizophrenia tend to have
much stronger temporal binding than healthy volunteers.
Moreover, unlike healthy volunteers, their temporal binding of
action timing does not depend on the probability of the outcome
tone presentation41. These results are explained by our Bayesian
model by assuming that schizophrenia patients cannot easily
adapt their abnormally strong belief in causality (i.e., too large P
(ξ= 1)) and the uncertainty in the outcome (i.e., σO). Another
important point is that, unlike healthy volunteers, patients with
schizophrenia exhibit temporal binding of action timing that
depends on the presence or absence of the outcome. It will be an
interesting future study to model this result by explicitly incor-
porating the probabilistic occurrence of the outcome in our
Bayesian model.

In summary, we posit that as the Bayesian cue integration is
primarily precision-dependent so is our theory of SoA. Our
model predicts and awaits confirmation that if the uncertainty
of the sensory input signals could be maintained small, even
unintended causal action may give rise to high CCE (hence,
strong SoA)—hence, our notion of precision-dependent casual
agency. We posited the precise estimation that gives rise to SoA
encapsulates consistency in the perceived action-outcome
effect, the prior belief of the causation of the outcome by the
action, and the reliability of the perceived sensory signals. This
theory may shed light on the mechanism of reduced SoA in
psychosis, the understanding of the difference between FoA and
JoA, and the design of prosthetic devices that heighten SoA.
Furthermore, the challenge for future experiments that aim to
link intentional binding to SoA is to demonstrate effects beyond
what our model has already predicted: with the reliability of
sensory inputs and strength of causal prior diminished, inten-
tionality should be sufficient for strong intentional binding to
emerge or not.

Methods
Analytical expressions for the Bayesian estimates. The MAP estimate (Eq. (3))
of the Bayesian observer has a simple analytical expression. The MAP estimation is
computed based on the posterior probability P(tA, tO, ξ|τA, τO)= P(τA, τO, tA, tO,
ξ)/P(τA, τO), where the peak location only depends on the joint distribution P(τA,
τO, tA, tO, ξ) in the numerator. The joint distribution is decomposed as P(τA, τO, tA,
tO, ξ)= P(τA|tA)P(τO|tO)P(tA, tO|ξ)P(ξ), where the conditional distributions for
action and outcome are P τAjtAð Þ ¼ exp � tA � τAð Þ2=ð2σ2AÞ

� 	
=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2A

p
and

P τOjtOð Þ ¼ exp � tO � τOð Þ2=ð2σ2OÞ
� 	

=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2O

p
, respectively, and the prior

distribution is

P tA; tOjξð Þ ¼ exp � tO�tA�μAOð Þ2
2σ2AO

� �
=Z1 ðξ ¼ 1Þ

1=Z0 ðξ ¼ 0Þ

8<
:

with normalization constants Z1 �
R
Rexp � tO�tA�μAOð Þ2

2σ2AO

� �
dtAdtO � ffiffiffiffiffi

2π
p

σAOT

and Z0 �
R
RdtAdtO ¼ T2.

The prior probability distribution P(tA, tO|ξ) cannot be normalized unless a
finite range of (tA, tO) is defined. Therefore, we only consider it in the range
R ¼ tA; tOjtA 2 t�A � T=2; t�A þ T=2

� �
; tO 2 t�O � T=2; t�O þ T=2

� �� �
and assume

that it is zero outside R, where again t�A ¼ 0 ms and t�O ¼ 250 ms are the true action
and outcome timings, unknown to the observer, and T= 250 ms is a large enough
but finite constant that specify the interval lengths in consideration. Hence, the
prior probability distribution P(tA, tO|ξ) must be normalized within R. Our results
are robust to a shift in the center of R.

We separately compute the peak location ð̂tA; t̂OÞ for the causal case ξ= 1 and
the acausal case ξ= 0 and, then, compare these two peaks. In the acausal case,
because P(τA|tA) and P(τO|tO) take the maximum values at tA= τA and tO= τO,
respectively, the location of the acausal peak is t̂A; t̂O

� �jξ¼0¼ ðτA; τOÞ and the peak

value is max
tA ;tO

P τA; τO; tA; tO; ξ ¼ 0ð Þ ¼ Pðξ¼0Þ
2πσAσOZ0

. In the causal case, the peak of the

joint distribution is found by minimizing a quadratic function. The peak location is

given by t̂A; t̂O
� �jξ¼1¼ τA þ σ2A

σ2tot
τO � τA � μAO
� �

; τO � σ2O
σ2tot

τO � τA � μAO
� �� �

,

where σ2tot � σ2A þ σ2O þ σ2AO is the total variance, and the peak value is computed

as max
tA ;tO

P τA; τO; tA; tO; ξ ¼ 1ð Þ ¼ Pðξ¼1Þ
2πσAσOZ1

exp � τO�τA�μAOð Þ2
2σ2tot

� �
. We define the log

ratio of the posterior peaks for ξ= 1 and ξ= 0 by

r �
max
tA ;tO

P tA; tO; ξ ¼ 1jτA; τOð Þ
max
tA ;tO

P tA; tO; ξ ¼ 0jτA; τOð Þ ¼ exp θ � τO � τA � μAO
� �2

2σ2tot

 !

with θ � log P ξ¼1ð ÞZ0
P ξ¼0ð ÞZ1

h i
. If r > 1, the MAP estimate is given by t̂A; t̂O

� �jξ̂¼1 and

ξ̂ ¼ 1, which predicts perceptual shifts. If r < 1, the MAP estimate is given by
t̂A; t̂O
� �jξ̂¼0 and ξ̂ = 0, which predicts no perceptual shifts. The probability for

detecting causality (i.e., ξ̂ = 1) is also easily computable, because τO− τA− μAO is
distributed according to the Gaussian distribution Nðm; σ2A þ σ2OÞ with
m � t�O � t�A þ dO � dA � μAO. Hence, the causality is detected if jτO � τA �
μAOj<

ffiffiffiffiffi
2θ

p
σtot and this happens with probability

Pc ¼
1
2

erf

ffiffiffiffiffi
2θ

p
σtot �mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Next, we evaluate the confidence in the causal MAP estimation
CCE � max

tA ;tO
P tA; tO; ξ ¼ 1jτA; τOð Þ, which comprises the numerator of the ratio r.

To quantify this confidence, we need to first evaluate P(τA, τO)= P(τA, τO, ξ= 1)+
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Fig. 6 Bayesian model predictions of CCE as function of the causal prior and temporal disparity τO− τA. a The different effects of the causal prior on CCE
across the three conditions is evident even with equal causal priors, which means that CCE depends on outcome uncertainty. b When plotted as functions
of the temporal disparity τO− τA, given the condition-dependent causal priors (marked by the colored dots in a), CCE falls off with the disparity of sensory
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P(τA, τO, ξ= 0) with

P τA; τO; ξ ¼ 1ð Þ ¼ RR
R
P tA; tO; ξ ¼ 1; τA; τOð ÞdtAdtO

¼ P ξ¼1ð ÞσAO
Z1σtot

exp � τO�τA�μAOð Þ2
2σ2tot

� �

and

P τA; τO; ξ ¼ 0ð Þ ¼ RR
R
P tA; tO; ξ ¼ 0; τA; τOð ÞdtAdtO

¼ P ξ¼0ð Þ
Z0

Combining these expressions together, we obtain

CCE ¼ max
tA ;tO

P τA; τO; tA; tO; ξ ¼ 1ð Þ=P τA; τOð Þ

¼ σtot
2πσAσOσAO

Sigmoid θ � τO�τA�μAOð Þ2
2σ2tot

þ log σAO
σtot

� �

where Sigmoid(x)= 1/(1+ e−x) is the sigmoid function.
In this work, we focus on the timing to investigate the intentional binding

effects but the mathematical elucidations above can permit other modalities (e.g.,
visual or haptic) and structural properties (e.g., inter alia, location, size, shape, and
texture).

Model fitting. The simple analytical expression for the Bayesian timing estimate
has an intuitive form and exposes all parameter dependencies explicitly. This
allowed us to perform a theoretically guided parameter search to reproduce the
experiments. We posit the perceptual delay d and jitter of SD σ due to sensory noise
explain the reported means and SDs of the baseline event timing. Hence, we could
immediately fix the values of parameters dA, σA, dO, and σO (Table 1-Sets A and B).
This leaves us with three free parameters, μAO, σAO, and P(ξ= 1), where fitting is
not direct. Equation (5) shows that μAO alone can determine the qualitative dif-
ference between action-outcome binding (τO− τA > μAO) and repulsion (τO− τA <
μAO). This immediately gives us a possible range of μAO that could account for both
binding and repulsion, which is 182 ms < μAO < 259 ms, because t�O þ dO

� ��
t�A þ dA
� �� μAO must be positive and negative in the voluntary condition and
involuntary condition, respectively, from Eq. (5). We therefore tested
μAOϵ 190; 200; ¼ ; 240; 250½ �ms with 10 ms increments. Our model also explains
that both σAO and P(ξ= 1) can similarly influence the magnitude of binding and
repulsion (c.f. Eq. (5) and formula for Pc). To obtain discernible perceptual shifts,
σAO should be small and P(ξ= 1) should be large. As their effects are similar, we
fixed σAO= 10 ms and we varied P(ξ= 1) later on, and observed how different
causal prior strengths influenced action-outcome binding and repulsion.

The principal measure of intentional binding is the mean perceptual shift of
temporal awareness of action and sensory outcome. A perceptual shift is the change
in the subjective estimation of action or outcome timing from the baseline to the
operant condition. This can be computed as E t̂A

� 	� E τA½ � and E t̂O
� 	� E τO½ � (c.f.

Eq. (5)) for action and outcome timings, respectively. A positive shift therefore
informs the perception of timing shifted later in time and a negative shift informs
the perception of timing shifted earlier in time. We could then compute for the
model estimation error as absolute difference between our Bayesian model’s
estimates of the mean action and outcome perceptual shifts and the corresponding
perceptual shifts reported in the experiments. We then selected the parameter
values that best minimized the model estimation error.

Simulation details. Table 1 lists all the parameters of our Bayesian model. We
performed different simulations to reproduce the action and outcome perceptual
shifts reported by Haggard et al.3 and Wolpe et al.22, and to explain their under-
lying psychophysical mechanisms in Bayesian terms.

In the first simulation, our objective was to determine μAO, to reproduce the
perceptual shifts reported by Haggard et al3. We generated 35,000 instances of τA
and τO pairs for each experimental condition using the baseline parameters in
Table 1-Set A. Testing each value in the set of possible values for μAO, and with
σAO= 10 ms, we obtained the model estimation errors for the reported action and
outcome perceptual shifts listed in Table 2-Set A. We took the average of the model
estimation errors for the voluntary, involuntary, and sham conditions to obtain a
single model estimation error. We looked at the model estimation errors for (a)
action perceptual shifts only, (b) outcome perceptual shifts only, and (c) action-
outcome perceptual shifts. Our results showed the best estimates of the model to be
at μAO= 230 ms. Furthermore, we observed our Bayesian model’s estimates of the
perceptual shift in action timing alone was sufficient to indicate the optimal
parameters of the model.

Our objective in the second simulation was to obtain the specific strength of the
causal prior that reproduces Haggard et al.’s results. With μAO= 230 ms and
σAO= 10 ms, we tested for P(ξ= 1) in the range 0 to 1 with increments of 0.1. We
used the same pairs of τA and τO from the first simulation, and we computed once
again the model estimation errors for the empirical results listed in Table 2-Set A.
We selected the P(ξ= 1) that best minimized the model estimation errors for the
voluntary, involuntary, and sham conditions, and fit the experimental data.
Table 1-Set C includes the parameters that yielded the best model estimates.

Figure 1 shows the action and outcome perceptual shifts, as well as the intervals
between perceptual shifts, which were obtained by our Bayesian model using these
parameters.

In the third simulation, we aimed to reproduce the perceptual shifts reported by
Wolpe et al.22, listed in Table 2-Set B. We generated another set of 35,000 τA and
τO pairs using this time the baseline parameters listed in Table 1-Set B. We
performed simulations with μAO= 230 ms, σAO= 10 ms, and P(ξ= 1) in the range
0 to 1 with increments of 0.1. We did not perform additional simulations to
redetermine μAO, as our aim is to reproduce qualitatively all the experiments with
the same μAO and σAO as possible in order to have simple yet consistent
explanations by our Bayesian model. Although we did not modify here μAO and
σAO, our analyses and results can show their effects can be predicted and explained
by our model. The model estimation errors once again indicate the estimates of
action perceptual shifts led to the best estimates of the model. We list under
Table 1-Set D the P(ξ= 1) that yielded the best estimates of the model for the low,
intermediate, and high uncertainty tone conditions. Figure 5a shows the action and
outcome perceptual shifts, and intervals between shifts, predicted by our Bayesian
model for this experimental setup.

In the fourth simulation, our objective was to determine the influence of the
causal prior and the temporal difference τO− τA (that varies in every trial) on the
various predictions of our Bayesian model for Haggard et al.’s experimental setup.
We used the model parameters and τA and τO pairs from the first and second
simulations. We obtained our Bayesian model’s predictions of the intervals
between action and outcome perceptual shifts, binding and repulsion effects,
action-outcome timing interval, t̂O � t̂A, in the baseline and operant conditions,
and CCE. The results are shown in Figs. 2–4.

Our objective and target results in the final simulation were the same as the
fourth simulation, but we used the model parameters and τA and τO pairs from the
third simulation to account for the experimental setup of Wolpe et al.22. The
resulting plots are shown in Figs. 5 and 6.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are within the manuscript, which can be immediately generated using
the supplementary MATLAB source codes.

Code availability
The MATLAB source codes that were used to generate the simulated datasets and
analyze the simulation results are appended as Supplementary Source Codes.
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