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Abstract.  We study transitions in the Kuramoto model by shedding light on 
asymmetry in the natural frequency distribution, which has been assumed to be 
symmetric in many previous studies. The asymmetry brings two nonstandard 
bifurcation diagrams, with the aid of bimodality. The Þrst diagram consists of 
stationary states, and has the standard continuous synchronization transition 
and a subsequent discontinuous transition as the coupling strength increases. 
Such a bifurcation diagram has been also reported in a variant model, which 
breaks the odd symmetry of the coupling function by introducing the phase 
lag. The second diagram includes the oscillatory state emerging from the 
partially synchronized state and followed by a discontinuous transition. This 
diagram is Þrstly revealed in this study. The two bifurcation diagrams are 
obtained by employing the Ott ÐAntonsen ansatz, and are veriÞed by direct 
N-body simulations. We conclude that the asymmetry in distribution, with the 
bimodality, plays a similar role to the phase lag, and diversiÞes the transitions.
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1. Introduction

Rhythmic phenomena are ubiquitous in various Þelds, such as biology, chemistry, engi-
neering, physics and so on [1Ð4]. Rhythmic phenomena are classiÞed into the individual 
and collective levels, and individual rhythmic units cooperate to synchronize and orga-
nize the collective rhythmic motion. The individual rhythmic unit is mathematically 
described by a dynamical system having a limit cycle, and a limit-cycle oscillator is 
reduced to a phase oscillator by using the phase reduction technique [1], which extracts 
the rhythmic part from the limit-cycle oscillator. The phase reduction technique is 
applicable even under interactions with other oscillators as perturbations, and we can 
consider coupled phase-oscillators, which describes the synchronization.

The Kuramoto model is a paradigmatic phase-oscillator system, which has the 
all-to-all, mean-Þeld interaction [5Ð8]. In this model, each oscillator has the so-called 
natural frequency, which is constant in time and obeys a probability distribution. The 
coupling function between a pair of oscillators is represented by the sine function, 
where the argument is just the phase di!erence between the coupled oscillators. This 
simple model describes the transition from the incoherent state to the partially syn -
chronized state by strengthening the couplings even when the natural frequencies are 
not identical. This transition is called the synchronization transition, and is continu -
ous when natural frequency distributions are symmetric and unimodal as originally 
considered [5]. The steady states (the incoherent and the partially synchronized states 

Contents

1. Introduction 2

2. The Kuramoto model 4

3. The Ott–Antonsen reduction 6

4. Bifurcation diagrams 7
4.1. Bifurcations of stationary states  . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2. Bifurcations with oscillatory states  . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Conclusion and discussion 12

Acknowledgment 14

Appendix A. Derivation of the reduced equations 14

Appendix B. Calculation of Kc from the linear stability analysis  
in the continuum equation 14

References 16

https://doi.org/10.1088/1742-5468/aa53f6


Nonstandard transitions in the Kuramoto model: a role of asymmetry in natural frequency distributions

3doi:10.1088/1742-5468/aa53f6

J. S
tat. M

ech. (2017) 013403

for instance) and the transitions are represented on bifurcation diagrams depending on 
parameters like the coupling strength. The bifurcation diagrams depend on the natural 
frequency distributions as well as the coupling function, and drawing bifurcation dia -
grams is one of the central issues in the coupled phase-oscillator systems as the phase 
diagrams in condensed matters.

The bifurcation diagram crucially depends on symmetry of the system as illustrated 
by the simple dynamical system = − −x ax x h˙ 3  [9, 10]. In the case h  =   0, where the 
equation is invariant with respect to the transformation →−x x, the system undergoes 
the pitchfork bifurcation. On the other hand, when ≠h 0, the equation is asymmetric 
and the system exhibits not the pitchfork but the saddle-node bifurcation. Similarly, the 
Kuramoto model shows di!erent bifurcation diagrams from the originally obtained one 
by breaking symmetry of the coupling function or of the natural frequency distributions.

We Þrst turn our attention to the coupling function. In the Sakaguchi ÐKuramoto 
model [11], which introduces the phase lag parameter in the sine coupling function of 
the Kuramoto model, the non-zero lag breaks the odd symmetry of the coupling func-
tion and the discontinuous transition can appear [12, 13]. The phase lag induces a 
further drastic change that one bifurcation diagram includes both a continuous and a 
subsequent discontinuous transitions, where the latter emerges not from the incoherent 
state but from the partially synchronized state [12].

Coming back to the original Kuramoto model, which is the target of this study, 
we focus on the natural frequency distributions, which have been assumed to be sym-
metric or unimodal so far. By breaking the symmetry of distributions, the synchroniza -
tion transition can change from continuous to discontinuous ones [14, 15]. However, 
asymmetric unimodal distributions have not generated a bifurcation diagram including 
a continuous and a discontinuous transitions, which is reported in the SakaguchiÐ
Kuramoto model.

As discussed above, there are two ways to introduce asymmetry in the Kuramoto 
model, but asymmetric distributions have not been widely investigated except for the 
limited cases [14, 15]. Nevertheless, the asymmetric case should be considered, since the 
symmetry of natural frequency distributions is not trivial and slight asymmetry may 
induce qualitative changes in bifurcation diagrams. Therefore, the Þrst question con-
sidered in this article is: Can we reproduce the nonstandard bifurcation diagram which 
includes the two transitions and is observed in the SakaguchiÐKuramoto model by 
introducing asymmetry of the natural frequency distribution in the Kuramoto model ?

Asymmetric unimodal distributions could not realize it yet. Our idea is, therefore, 
to break the other assumption of unimodality, and to consider asymmetric bimodal 
distributions. Before going to the second question, we review bifurcation diagrams in 
the symmetric bimodal case.

As well as the asymmetric unimodal distributions, symmetric bimodal ones give 
discontinuous synchronization transitions [16Ð20] but the prior continuous transition 
does not appear. Apart from the stationary states and extending objects to nonsta-
tionary states, we have the collective oscillation with noise [16, 17] and later without 
noise [18Ð20]. This oscillatory state directly bifurcates from the incoherent state as the 
partially synchronized state going through the continuous synchronization transition. 
Thus, the second question arises: Is it possible for the oscillatory state to bifurcate from 
the partially coherent state as the subsequent discontinuous transition observed in the 
SakaguchiÐKuramoto model?

https://doi.org/10.1088/1742-5468/aa53f6
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The purposes of this article are to answer the above two questions by introducing 
a family of smooth asymmetric bimodal distributions, and to demonstrate that the 
asymmetry with the bimodality in distributions plays a similar role to the asymmetry 
in the coupling function.

A simple way to draw bifurcation diagrams is to perform N-body simulations, but 
the Þnite-size ßuctuation is an obstacle. The Þnite-size ßuctuation is eliminated by 
taking the limit ! !N , and the Kuramoto model is described by the equation of conti-
nuity, but the inÞnite dimensionality is another di"culty. To overcome this di"culty, 
we introduce the Ott ÐAntonsen ansatz [21Ð23], which reduces the inÞnite-dimensional 
equation of continuity to a Þnite-dimensional dynamical system and succeeds in various 
oscillator systems [18, 21, 24Ð29]. The theoretical results obtained by the ansatz are 
veriÞed by comparing with direct N-body simulations.

This article is organized as follows. We introduce the Kuramoto model of coupled 
phase-oscillators in section 2. The reduced system is derived by the Ott ÐAntonsen 
ansatz in section 3. The theoretical predictions in the reduced system are compared with 
the N-body simulations in section 4. We summarize this article in the Þnal section 5.

2. The Kuramoto model

The Kuramoto model is described by the equations

( ) ( )!
!

" ! != + " =
=

!
t

K
N

i N
d
d

sin , 1, ,i
i

j

N

j i
1

 (1)

where [ )! "! 0,2i  represents the phase of the ith oscillator and real ! i  the natural 
frequency. The natural frequencies are obeyed by the probability density function 
( )!g , where ( )! !g d  is a fraction of oscillators having natural frequency between !  and 

! !+ d . The coupling function is chosen as to be odd and !2 -periodic, and sine is one 
of the simplest choices. We assumed that the interaction is all-to-all, and that the cou -
pling strength K  >   0 does not depend on coupling pairs. The order parameter

!= =! "

=

z r
N

e
1

eN N
j

N
i

1

iN j (2)

measures the extent of synchronization by !r 0N  and the collective phase by ! N for the 
N oscillators.

In the limit of ! !N , we consider the probability density function ( )! "f t, , , where 
( )! " ! "f t, , d d  denotes the fraction of oscillators with phase between "  and ! !+ d  and 

natural frequency between !  and ! !+ d  at time t under the normalization condition

( )! !! " " ! =
#

"#

#
f td d , , 1

0

2

 (3)

which induces

( ) ( )! ! ! " "=
#

f t gd , , .
0

2

 (4)
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Since the number of the oscillators conserves, the probability density function satisÞes 
the equation of continuity:

( )
!

!
!

+
!
!

=
f
t

fv 0. (5)

By deÞning the velocity Þeld v as

( ) ( ) ( )! !! " " " ! ! " ! != + "# # #
#

"$

$
v t K f t, , d d , , sin ,

0

2

 (6)

the equation of continuity corresponds to the evolution equations of the phase- 
oscillators (1) [30].

In the continuous limit, the order parameter is

! !! " " != =#
$

"

"#

#
z r f te d d , , e .i

0

2
i( ) (7)

For a symmetric and unimodal ( )!g , after some calculations, Kuramoto derived the 
self-consistent equation for r which must be satisÞed in stationary states [1]:

( )
/

/

! ! ! !=
"

"

"
r K r g Krd sin cos .

2

2
2 (8)

The self-consistent equation (8) has the unique trivial solution r  =   0 for !K K c, but 
has one more positive solution for >K K c. The system exhibits a continuous spontane-
ous synchronization above Kc where / [ ( )]!=K g2 0c  [5, 6, 8, 31]. However, the breaking 
of symmetry or unimodality may change the continuity of transitions. Indeed, asym -
metric unimodal [14, 15] and symmetric bimodal [18, 19] cases produce discontinuous 
transitions.

In this paper, to investigate the asymmetric bimodal case, we consider the following 
family of smooth natural frequency distributions:

( )
[( ) ] [( ) ]

( )ω
ω γ ω γ

γ γ=
−Ω + + Ω +

Ω >g
c

, , , 0
2

1
2 2

2
2 1 2 (9)

where

[( ) ]
( )

γ γ γ γ
π γ γ

=
+ + Ω
+

c
41 2 1 2

2 2

1 2
 (10)

is the normalization constant. This family, whose form is the product of two Lorentzian 
distributions, can be bimodal and/or asymmetric depending on parameters Ω, γ1,  
and γ2. We note that the Kuramoto model (1) is invariant under appropriate scalings of 
ω γΩt K, , , ,i 1 and γ2. Thus, we impose the arbitrarity of γ2 to the other parameters and 

set ! = 12  without loss of generality. Figure  1 represents the diagram of the distribu-
tion forms. We explore only the left-half plane from the symmetry line without loss of 
generality, since bifurcations in the other side are replicated by putting →! !! .

https://doi.org/10.1088/1742-5468/aa53f6
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3. The Ott –Antonsen reduction

The Ott ÐAntonsen ansatz [21Ð23] is a powerful tool to reduce the inÞnite-dimensional 
equations of continuity to Þnite-dimensional ordinary di!erential equations. In prac -
tice, many works succeed in reducing the dynamics of the coupled phase-oscillators  
[18, 21, 24Ð29]. In this section, we employ the ansatz and derive the reduced  equation to 
obtain precise bifurcation diagrams.

The Ott ÐAntonsen ansatz [21] introduces the Fourier expansion of ( )! "f t, ,  as

( )
( )

( ( ) ø( ) )
!

"
#

$

%
&!! "

"
#

" "= + +! !

=

"
#f t

g
a t a t, ,

2
1 , e , e ,

n

n n n n

1

i i (11)

where we assume ( )!| | <a t, 1 to ensure convergence of the sum. From the assumption 
(11) and the continuous equation (5), the Kuramoto model with the distribution (9) is 
reduced to the system of the two complex variables A and B (see the appendix A for 
the derivation ):

( ) [( ø ø ø ø) ( )]!= ! " " + " +
A
t

A
K

k A k B A k A k B
d
d

i
2

,1 1 2
2

1 2 (12)

( ) [( ø ø ø ø) ( )]!= ! " + ! + ! +
B
t

B
K

k A k B B k A k B
d
d

i
2

,2 1 2
2

1 2 (13)

Figure 1.  ClassiÞcation of the family of distributions (9) with 12! = . The red 
dashed line denotes the symmetric distributions. The blue solid lines are the borders 
between the unimodality and the bimodality. The circle and the triangle represent 
the parameter sets studied in section 4. (insets) Forms of the two distributions, 
where the dashed vertical lines denote 0! = .
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where we set the constant parameters k1 and k2 as

[ ( )]

( ) [ ( )]

[ ( )]

( ) [ ( )]
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! ! ! !
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! ! ! !
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! + +
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,
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2 i
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2 1 2

1 2 1 2
2

1 1 2

1 2 1 2
 (14)

We have Þxed as ! = 12 , but the symbol ! 2 remains to clarify how it appears in the 
above equations. We note that the relation ø=k k2 1 holds if the distribution is symmet -
ric, namely ! !=1 2. The complex order parameter z is represented by A and B as

= +z k A k B,1 2 (15)

and we concentrate on the amplitude = | |r z , which expresses the extent of the 
synchronization.

We construct bifurcation diagrams by searching steady states in which the ampl-
itude r(t) is constant or oscillatory. The former and the latter states in the reduced 
system correspond to the stationary states and the oscillatory states, respectively in the 
original system. The formers are further classiÞed into the trivial Þxed-point solution 
of A  =   B  =   0 corresponding to the incoherent state with r  =   0, and nontrivial solutions 
with constant r  >   0 corresponding to the partially synchronized states. Stability of 
the trivial solution is analyzed by considering the !4 4 Jacobian matrix derived from 
equations (12) and (13). For detecting the nontrivial solutions, we perform one more 
reduction since r depends on r r,A B and # only, where we introduced the polar forms 

= =! !! !A r B re , eA B
i iA B and the phase di!erence variable ! ! != !A B. The three vari -

ables are obeyed by the equations
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(18)

where kRe i and kIm i represent the real and the imaginary parts of ki (i  =   1, 2), respec-
tively. The nontrivial solutions are found as the Þxed points of the 3-dimensional 
system, and their stabilities are su"ciently captured by the associated !3 3 Jacobian 
matrix. Based on this discussion, we search the oscillatory states by performing numer-
ical simulations of the 3-dimensional system.

4. Bifurcation diagrams

In this section we obtain the two new types of bifurcation diagrams by computing 
Þxed points of the reduced equations (16)Ð(18) theoretically, and oscillating solutions 

https://doi.org/10.1088/1742-5468/aa53f6
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numerically. The bifurcation diagrams are validated by comparing with direct N-body 
simulations of equation (1). All the simulations of the reduced system and the N-body 
system are performed by the fourth-order RungeÐKutta method with the time step 

=td 0.01. The synchronization and the collective oscillation are investigated by calcu-
lating the averages and the standard deviations of r in the time interval [ ]!t 4500,5000, 
in which we conÞrmed that the system reaches a steady state. In section 4.1, we show 
the Þrst bifurcation diagram consisting of stationary states corresponding to the Þxed 
points of the reduced equations (16)Ð(18). In section 4.2, the second bifurcation diagram 
is reported which includes the oscillatory states corresponding to the limit-cycle solu-
tions of the reduced system.

4.1. Bifurcations of stationary states

We here concentrate on exploring nontrivial Þxed-point solutions by setting 
/ / /!= = =r t r t td d d d d d 0A B  in equations (16)Ð(18). Analytical solutions for the param-

eter set ( ) ( )!! =, 1.5, 0.91 , which makes ( )!g  asymmetric and bimodal, are plotted as 
lines in Þgure 2 with the trivial solution r  =   0. We marked Kc derived theoretically from 
the equation of continuity (see the appendix B) at which the incoherent state changes 
the stability. The derived Kc is in good agreement with the analysis of the reduced 
system. At Kc, the stable incoherent state continuously bifurcates into the unstable 
incoherent state and the partially synchronized state as the symmetric unimodal case. 
Further increasing K, we Þnd the discontinuous transition and coexistence of the two 

Figure 2.  Bifurcations of stationary states in the Kuramoto model for 
, 1.5, 0.91( ) ( )!! = . The lines are theoretically obtained Þxed-point solutions to the 

reduced equations (16)Ð(18). The blue solid and the red dashed lines represent the 
stable and the unstable branches, respectively. The points are the time averages 
in the N-body simulations. The triangles and the inverse triangles indicate the 
forward and the backward processes, respectively, where the forward process 
increases K with Kd 0.01=  whereas the backward process decreases K after the 
forward simulation. The sizes of the points indicate the system sizes.

https://doi.org/10.1088/1742-5468/aa53f6
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partially synchronized stable branches. The subsequent discontinuous transition is 
observed in the SakaguchiÐKuramoto model [12], but according to our best knowledge, 
this type of bifurcation diagram has not been discovered in the Kuramoto model with 
bimodal ( )!g .

To verify the bifurcation diagram obtained under the Ott ÐAntonsen ansatz, we 
numerically simulate the N-body system. Here, we set =N 10 , 10 ,103 4 5 and integrate 
equation (1) with natural frequencies randomly generated from the distribution equa -
tion (9). To see the hysteresis in the discontinuous transition the simulations are per-
formed with Þrstly increasing and subsequently decreasing the coupling strength K, 
where we call the former process with the increase of K the forward process and the 
latter the backward process, respectively. The forward simulation denoted as the tri -
angles in Þgure 2 increases K with the step =Kd 0.01 from K  =   2.9 to K  =   3.1 and 
the initial state is set to the previous Þnal state at each K except for K  =   2.9 in which 
the initial conditions of the phase variables are chosen randomly from the uniform 
distribution on the circle. The backward process is represented as the inverse triangles 
in Þgure 2, which is realized by decreasing in the same interval [2.9,3.1] of K and the 
step =Kd 0.01. All the numerically computed points, and the discontinuous transition 
in particular, are qualitatively in good agreements with the Ott ÐAntonsen analysis. 
Consequently, the theoretically obtained new bifurcation diagram has been veriÞed.

Figure 3.  Bifurcation diagram for , 3.0, 0.81( ) ( )!! =  obtained by simulating the 
reduced 3-dimensional system. The averages of the order parameter are plotted 
by points, which are connected with lines to emphasize the continuous and the 
discontinuous transitions at K K c=  and around K  =   6, respectively. The standard 
deviations are represented by vertical bars associated with the points, where large 
deviations indicate oscillation of the order parameter. Red (blue) points and lines 
are for the forward (backward) process, where the forward process increases K with 
Kd 0.05=  whereas the backward process decreases K after the forward simulation. 

For the points A ÐE, temporal evolutions of the order parameter are plotted in 
Þgure 4, and synchronizations on the ,( )! "  plane in Þgure 5.

https://doi.org/10.1088/1742-5468/aa53f6


Nonstandard transitions in the Kuramoto model: a role of asymmetry in natural frequency distributions

10doi:10.1088/1742-5468/aa53f6

J. S
tat. M

ech. (2017) 013403

4.2. Bifurcations with oscillatory states

Previous works on the Kuramoto model with symmetric bimodal distributions [18, 19] 
reported that the reduced system has not only the Þxed-point solutions but also limit-cycle 
solutions, which correspond to the collective oscillations. We search oscillatory states in 
our asymmetric bimodal case by performing numerical simulations of the reduced system. 
The main strategy is to increase the parameter !  representing the distance between the 
two peaks of the distribution ( )!g  from the value examined in section 4.1.

For the parameter set ( ) ( )!! =, 3.0, 0.81 , the averages and the standard deviations 
of r(t) are plotted in Þgure 3 for the steady states realized after transient durations. 
Large standard deviations indicate the oscillation of r, and the oscillatory states are 
observed in our asymmetric bimodal case around the interval [5, 6] of K.

We give two remarks on the bifurcation diagram. First, the discontinuous trans-
ition  emerges from the oscillatory states, and the hysteresis is conÞrmed by performing 
the forward and the backward processes as done in the previous section 4.1 but for the 
reduced system with the step =Kd 0.05, where we set !r r, 0A B  and # to the arbitrary 
constant as the initial state of the forward process and give the perturbation to r r,A B at 
each K to see the stability. Accordingly, the coexistence of an oscillatory and a station -
ary states is observed as in the symmetric bimodal case [18Ð20]. Second, the oscillatory 
state appear after the continuous transition, and arise from the partially synchronized 
states around K  =   5. This emergence manner of the collective oscillation shows a sharp 
contrast with the symmetric bimodal case, in which it arises from the incoherent state.

We examine the bifurcation diagram obtained in the reduced system by performing 
N-body simulations at the points A (K  =   4.0), B (K  =   5.5), C (K  =   6.0), D (K  =   6.5) in 

Figure 4.  Comparison of time evolutions of the order parameters between the 
reduced system (solid light blue lines) and N-body system (dashed magenta lines) 
for , 3.0, 0.81( ) ( )γΩ = . The examined points are marked in Þgure 3: (a) A, (b) B, (c) 
C, (d) D from the forward process and (e) E from the backward process.

https://doi.org/10.1088/1742-5468/aa53f6
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the forward process and E (K  =   6.0) in the backward process marked in Þgure 3. At 
each point, temporal evolutions of r(t) are compared between the reduced system and 
the N-body system in Þgure 4. For the comparisons, we shifted the N-body lines prop-
erly, since the initial phase of the collective oscillation do not matter. The two lines 
show good agreements, even under the Þnite-size ßuctuation.

To look into the oscillatory states observed here, in Þgure 5 we represent the 
snapshots of { ( )}! ",i i  in the steady states of the N-body simulations at the Þve points 
of A, B, C, D and E. The population of the oscillators forms only one synchronized 
cluster in Þgures 5 (a), (d) and (e), but the two clusters exist in Þgures 5 (b) and (c). 
The two-cluster states are called the traveling wave states, which were observed in 
systems with asymmetric distributions [32] and with random coupling [32, 33]. We 
observe that existence of the second smaller cluster induces the oscillating states, and 
coalescing of the two cluster triggers the discontinuous transition. If we had a sym-
metric bimodal natural frequency distribution, the two groups of the synchronized 
oscillators would emerge simultaneously as seen in [18Ð20], and the oscillatory states 
would emerge at Kc from the incoherent state. However, the asymmetry permits the 
two groups to synchronize separately, and provides the continuous synchronization 
transition at Kc. Another interesting observation is that the natural frequencies in the 
second cluster are not located at the second peak of the natural frequency distribution 
as shown in Þgure 5 (f).

Figure 5.  Snapshots of ,i i{ ( )}! "  in the N-body simulations for , 3.0, 0.81( ) ( )!! =  
with N  =   105. The examined points are marked in Þgure 3: (a) A, (b) B, (c) C, (d) 
D from the forward process and (e) E from the backward process. The natural 
frequency distribution is displayed in the panel (f) for comparing with the panel 
(b) in particular. The two peaks of the distribution are pointed to by arrows in the 
panels (b) and (f).

https://doi.org/10.1088/1742-5468/aa53f6


Nonstandard transitions in the Kuramoto model: a role of asymmetry in natural frequency distributions

12doi:10.1088/1742-5468/aa53f6

J. S
tat. M

ech. (2017) 013403

5. Conclusion and discussion

We studied bifurcation diagrams in the Kuramoto model having asymmetric bimodal 
distributions of natural frequencies. With the aid of the Ott ÐAntonsen ansatz [21], we 
theoretically found the two new bifurcation diagrams. One includes continuous and 
subsequent discontinuous transitions and the other shows the oscillatory state bifur-
cating from the partially coherent states. These theoretical results were validated by 
comparing with direct N-body simulations.

The Þrst diagram we found has been reported in the SakaguchiÐKuramoto model 
with the symmetric unimodal distribution. However, according to our best knowledge, 
such a bifurcation diagram has not been observed in the Kuramoto model, and this is 
the Þrst observation by introducing asymmetric bimodal distributions.

The second diagram has the oscillatory states, in which the magnitude of the 
order parameter oscillates. With the symmetric bimodal distributions the oscillatory 
states have been reported to bifurcate from the incoherent state [18Ð20]. However, the 
asymmetry lets the oscillatory state emerge from partially synchronized state in the 
bifurcation diagram. This emergence happens because the synchrony begins around 
the higher peak, which forms the Þrst cluster, and the second synchrony subsequently 
occurs, which forms the relatively traveling second cluster as discussed in the sec-
tion  4.2. It is worth noting that the second synchrony is not located at the center of 
the lower peak.

From the perspective obtained by the second diagram, we reconsider the Þrst dia-
gram. Contrastingly with the second bifurcation diagram, we numerically conÞrmed 
by the N-body simulations that the Þrst diagram has no second cluster. We suppose 
that, as the separation of the two peaks become smaller, the oscillatory states tend to 
disappear and the bifurcation diagram approaches from the second bifurcation diagram 
to the Þrst. Therefore, we expect the border line between the two diagrams on the 
parameter space, and drawing the line has to be done.

We give the two remarks to emphasize the worth of this article. First, Kuramoto 
sketched the successive synchronies observed in the second bifurcation diagram for 
the asymmetric bimodal case in [1], where the Þrst and the second synchronies were 
expected to appear around the higher and the lower peaks of ( )!g , respectively, and 
to be isolated. Beyond the sketch, this article has revealed that the second cluster 
may not be located around the center of the lower peak as shown in Þgure 5, and may 
not appear as in the Þrst diagram. Second, we demonstrated that the asymmetry of 
natural frequency distributions discloses the bifurcation diagrams hidden in the sym-
metric case, as the SakaguchiÐKuramoto model can do by introducing asymmetry in 
the coupling function. Indeed, keeping the peak-separation parameter !  and setting 
the distribution to be symmetric, we could not Þnd the reported new bifurcation dia -
grams. We, therefore, conclude that the asymmetry in the natural frequency distribu -
tions plays a similar role to the asymmetry in the coupling function, introduced in the 
SakaguchiÐKuramoto model.

We note that similar bifurcation diagrams to the reported diagrams in this paper 
were observed in the noisy Kuramoto model with delta-type trimodal natural fre -
quency distributions [34]. It is not straightforward to construct connection between 
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the Kuramoto model with the noisy Kuramoto model having the delta-type distribu -
tions, but we speculate an analogy between the symmetric trimodal case and the asym-
metric bimodal case in the noiseless Kuramoto model. For simplicity we consider a 
smooth symmetric trimodal distribution whose highest peak is at the origin. Then, we 
conjecture that the Þrst synchronization happens at the highest center peak without 
oscillation, and that the second occurs around the other two peaks simultaneously. 
Appearance of oscillation in the second synchronization may depend on the distance 
of the lower two peaks from the origin. This two-step synchronization is similar to 
the asymmetric bimodal case which has been revealed in this article. In other words, 
the symmetry reduces the number of synchronization steps from the number of peaks, 
while the asymmetry may keep it. ConÞrmation of this conjecture has to be done. 
Moreover, as seen in the nonstandard transitions in the SakaguchiÐKuramoto model 
[12], the phase lag parameter also makes the type of transitions various, which was 
observed in a variant of the Kuramoto model and networks of phase oscillators [35, 36]. 
To reveal the relation among the roles of asymmetry, multimodality, stochastic noise 
and phase lag is a very important future work.

We further discuss on the asymmetry by using analogies between the Kuramoto 
model and Hamiltonian systems. We start from referring to two analogies. The Kuramoto 
model shares macroscopic aspects with a Hamiltonian system in the critical exponents 
concerning with the applied external force (see [37Ð40] for the Kuramoto model and 
[41Ð45] for the Hamiltonian system ). Another analogy is used in the analysis on the 
Landau damping [46], which is originally studied in plasma physics, and is applied 
to the Kuramoto model [47]. Taking account of the above analogies, the analyticity 
of natural frequency distributions is expected to change macroscopic dynamics in the 
Kuramoto model, since non-analytic momentum distributions in a Hamiltonian system, 
which correspond to the natural frequency distributions in the Kuramoto model, make 
the exponential Landau damping algebraic [48]. This perspective tells us that the study 
on the asymmetric unimodal case has not completed, because the previously studied 
distributions are not di!erentiable [14, 15, 49]. Our preliminary researches did not Þnd 
nonstandard bifurcation diagrams in the analytic asymmetric unimodal case, but fur -
ther investigations are necessary. It is still an open question what is the whole role of 
asymmetry. For instance, an asymmetric unimodal momentum distribution makes the 
susceptibility tensor non-diagonable even in a simple Hamiltonian system [50]. Thus, it 
might be interesting to study the response to an external force in the Kuramoto model 
with asymmetric natural frequency distributions.

As another perspective, further studies could be done on chaotic dynamics, since 
the reduced dynamics has three dimensions. Therefore, the chaotic properties should 
be studied as in [51, 52], although chaotic behavior was not observed in the reduced 
system as far as we have investigated.

Finally, we note that the present work concentrates on the family whose form is the 
product of two Lorentzian distributions, and there is another problem on the generality 
with natural frequency distributions which belong to other families, for example, the 
sum of Lorentzian distributions.
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Appendix A.  Derivation of the reduced equations

We derive the reduced equations (12) and (13) using the Ott ÐAntonsen ansatz from the 
original equation (1) and the natural frequency distribution (9).

We consider the Kuramoto model in the continuous limit ! !N , and from equa-
tion (1) the velocity of the phase can be written as

! " "= + !! !!v t
K

z z, ,
2i

e e ,i i( ) ( ø ) (A.1)

where we denote the complex order parameter (7) as ( ) = !z t r ei . The Ott ÐAntonsen 
ansatz [21] assumes that the probability distribution function ( )! "f t, ,  is expanded 
into the Fourier series as equation (11). Substituting the assumed ( )! "f t, ,  (11) and the 
velocity (A.1) into the continuous equation  (5), we obtain the equation for ( )!a t,  and 
( )z t  as

( ø)!
!
!

+ + " =
a
t

a
K

a z zi
2

0.2 (A.2)

From equations (7) and (11), we also Þnd

( ) ( ) ø( )! ! ! !=
"#

#
z t g a td , . (A.3)

From the complex conjugate of equation (A.2), ø/ ( ) ø!! ! " #a t aIm  as !! !Im . We 
then Þnd that ø( ) !!a t, 0 as !! !Im . The vanishing ø( )!a t,  permits us to add the 
upper semicircular contour to the integration of equation  (A.3) in the complex !  plane 
for using the residue theorem. Thus, assuming analyticity of ø( )!a t,  in ! >Im 0 [21], we 
have

( ) ø( ) ø( )! != ! + + " ! +z t k a t k a ti , i , ,1 1 2 2 (A.4)

because the distribution (9) has two poles at !! + i 1 and !! " + i 2 in the upper half 
plane. Temporal evolutions of the complex variables

( ) ø( ) ( ) ø( )! != ! + = " ! +A t a t B t a ti , , i , ,1 2 (A.5)

are obtained from the complex conjugate of equation (A.2) by setting !  as ! "= ! + i 1 
and ! "= ! " + i 2, respectively, and are expressed by equations (12) and (13).

Appendix B.  Calculation of K c from the linear stability analysis in the continuum 
equation

We here derive the equation determining the critical coupling strength Kc, at which the 
incoherent solution to the equation of continuity (5)
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( )
( )

! "
"
#

=f
g

,
20 (B.1)

is destabilized, where ( )!g  is the natural frequency distribution. The critical strength Kc 
is obtained by the linear stability analysis. We consider a perturbed solution ( )! "f t, ,  
with a perturbation ( )! "! f t, ,1  as

( ) ( ) ( )! " ! " ! "= + !f t f f t, , , , , ,0 1 (B.2)

where !! 1, and investigate when the perturbation grows.
We explicitly write the velocity functional v[ f  ] (6) as

[ ] [ ] [ ] ( ) ( )! !! ! " " ! " "= + " #$ $ $
#

#%

%
v f V f V f K f t, d d , , sin .

0

2

 (B.3)

Substituting the expansions of f (B.2) and v (B.3) into the equation  of continuity, and 
picking up the terms of ( )!O , we have

t
f v f V f 0,1 0 1 1 0( )

!
!
!

+
!
!

+ = (B.4)

where we put [ ]=v v f0 0  and [ ]=V V f1 1 . Expanding each function for the Fourier series 
as

( ) ÷( )!! " "= !

=" #

#

f t f n t, , , , e ,
n

n
1 1

i
 (B.5)

we obtain the equation

f

t
n t n f n t v f V n t, , i , , 0, 0, , , ,1

1 0 0 1

÷
( ) ( ÷( ) ÷( ) ÷( ) ÷( ))! ! ! ! !

!

!
= " + (B.6)

where we utilized the fact ÷( ) ÷( )! != =v n f n, , 00 0  for nonzero integer n. Performing the 
Laplace transforms

ö( ) ÷( )!! !=
"

#f n s t f n t, , d , , e ,st
1

0
1 (B.7)

where Re >s 0 to ensure the convergence, we have

( ÷( )) ö( ) ÷( ) ÷( ) ö( )! ! ! ! !+ = !s nv f n s f n nf V n si 0, , , , , 0 i 0, , , .0 1 1 0 1 (B.8)

We consider the cases ! ±n 1 and = ±n 1 separately. For the case ! ±n 1 it is easily 
shown that ÷( )! =V n t, , 0 and from equation (B.8) we obtain

ö( )
÷( )

!
!

!
=

+
f n s

f n

s n
, ,

, , 0

i
.1

1 (B.9)

Since we see ÷( ) ÷( )! != !!f n t f n, , , , 0 e n t
1 1

i  from the inverse Laplace transform of ö( )!f n s, ,1  
with equation  (B.9), it is shown that the magnitude of ÷( )!f n t, ,1  does not change with 
respect to time t as
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f n t f n, , , , 0 .1 1
÷( ) ÷( )! != (B.10)

This computation implies that the modes for n 1! ±  do not contribute to the destabili -
zation of the incoherent solution, and we then focus on the case n 1= ± . In the light of 
the fact that f t f t1, , 1, ,1 1

÷( ) ÷( )! !| | = | ! | , it is enough to consider only the case n  =   1. For 
n  =   1 the equation (B.8) becomes

( ) ö( ) ÷( ) ÷( ) ö( )!! ! ! " ! ! !+ = +
"#

#
s f s f Kf f si 1, , 1, , 0 0, d 1, , .1 1 0 1 (B.11)

We deÞne the function

ö( ) ö( )!! " "=
"#

#
n s f n s, d , , ,1 1 (B.12)

and integrate equation (B.11) over !  from ! "  to ! . Then, we formally obtain

!! "
"

"
=

+"#

#
s

D s

f

s
1,

1
d

1, , 0

i
,

K
1

1ö( )
( )

÷( )
 (B.13)

where the function D sK ( ) is deÞned by

( )
( )

! !
!

!
= +

""#

#
D s

K g
s

1 i
2

d
i

K (B.14)

in the domain Re >s 0 by recalling the domain of the Laplace transform and 
÷( ) ( )/( )! ! "=f g0, 20 . A root of ( )D sK , denoted by s0, gives a pole of ö( )! s1,1  at s  =   s0, and 
this pole gives the estimation of ÷( )! !t1, es t

1
0  in the linear regime by the inverse Laplace 

transform of ö( )! s1,1 . Therefore, roots of ( )D sK  in the domain Re >s 0 imply instabil -
ity of the incoherent state ( )! "f ,0  (B.1). The strongest instability is given by the root 
of ( )D sK  whose real part is the maximum, and we denote the root by ( )!s K  depending 
on K. The critical strength Kc is determined by the condition !limK K c

Re ( ) =!s K 0. A 
beneÞt of the Lorentzian type ( )!g  (9) is that we can conduct explicitly the integral 
in equation (B.14) with the aid of the residue theorem and obtain the critical coupling 
strength Kc exactly.

We note that there is an analysis of Kc for a generalized Kuramoto model in which 
the coupling strength K is replaced with ( )!Kh i  in equation (1), where the function ( )!h  
depends explicitly on the natural frequency [53].
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